POLYP IMAGE SEGMENTATION USING DEEP LEARNING TECHNIQUES: RESUNET++ ARCHITECTURE

Các tác giả

  • Tran Nguyen Quynh Tram Trường Đại Học Ngoại Ngữ - Tin Học TP.HCM (HUFLIT)

Từ khóa:

Image segmentaion, colonoscopy, deep learning, computer vision, health informatics

Tóm tắt

This study presents a novel polyp segmentation approach using ResUnet++. Trained on Kvasir-SEG and CVC-ClinicDB, ResUnet++ significantly outperforms traditional UNet and ResUnet. Its residual blocks and attention mechanisms enhance feature extraction, leading to improved segmentation in challenging cases. This highlights the potential of deep learning for advancing polyp segmentation and improving early colorectal cancer detection. Future research could explore further modifications or alternative architectures.

Tải xuống

Đã Xuất bản

04-03-2025

Cách trích dẫn

Tran Nguyen Quynh, T. (2025). POLYP IMAGE SEGMENTATION USING DEEP LEARNING TECHNIQUES: RESUNET++ ARCHITECTURE . Tạp Chí Khoa học HUFLIT, 9(1), 62. Truy vấn từ https://hjs.huflit.edu.vn/index.php/hjs/article/view/225

Số

Chuyên mục

Bài viết

##category.category##