Cải tiến thuật toán Hminer cho việc khai thác tập hữu ích cao trên dữ liệu thao tác thưa

Authors

  • Minh Thai Tran Faculty of Information Technology, Ho Chi Minh City University of Foreign Languages - Information Technology https://orcid.org/0000-0002-7671-4785
  • Anh Duy Tran
  • Le Thi Minh Nguyen
  • Nguyen Thanh Trung

Keywords:

Transaction dataset, Association rule, Data mining, High-Utility itemset

Abstract

High-utility itemset mining plays an important role in data mining. This mining helps to discover highly useful itemsets, i.e., itemsets of high importance or profit, in transactional databases. That helps companies and supermarkets to give appropriate business orientation and strategies to bring the highest profit. Depending on the form of dense or sparse data, mining algorithms will have suitable mining strategies and achieve certain efficiency. This paper focuses on researching and proposing mining methods on sparse datasets through data presentations and pruning techniques. The experimental evaluation results have proved the feasibility of the proposed solution.

Published

30-03-2023

How to Cite

Tran, M. T., Tran, A. D., Le Thi, M. N., & Nguyen, T. T. (2023). Cải tiến thuật toán Hminer cho việc khai thác tập hữu ích cao trên dữ liệu thao tác thưa. HUFLIT Journal of Science, 7(3), 7. Retrieved from https://hjs.huflit.edu.vn/index.php/hjs/article/view/131

Issue

Section

Articles

Categories